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Background: The combined analysis of imaging and functional modalities

is supposed to improve diagnostics of neurodegenerative diseases with

advanced data science techniques.

Objective: To get an insight into normal and accelerated brain aging by

developing the machine learning models that predict individual performance

in neuropsychological and cognitive tests from brain MRI. With these models

we endeavor to look for patterns of brain structure-function association (SFA)

indicative of mild cognitive impairment (MCI) and Alzheimer’s dementia.

Materials and methods: We explored the age-related variability of cognitive

and neuropsychological test scores in normal and accelerated aging and

constructed regression models predicting functional performance in cognitive

tests from brain radiomics data. The models were trained on the three study

cohorts from ADNI dataset—cognitively normal individuals, patients with MCI

or dementia—separately. We also looked for significant correlations between

cortical parcellation volumes and test scores in the cohorts to investigate

neuroanatomical di�erences in relation to cognitive status. Finally, we worked

out an approach for the classification of the examinees according to the

pattern of structure-function associations into the cohorts of the cognitively

normal elderly and patients with MCI or dementia.

Results: In the healthy population, the global cognitive functioning slightly

changes with age. It also remains stable across the disease course in the
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majority of cases. In healthy adults and patients with MCI or dementia, the

trendlines of performance in digit symbol substitution test and trail making test

converge at the approximated point of 100 years of age. According to the SFA

pattern, we distinguish three cohorts: the cognitively normal elderly, patients

with MCI, and dementia. The highest accuracy is achieved with the model

trained to predict the mini-mental state examination score from voxel-based

morphometry data. The application of themajority voting technique tomodels

predicting results in cognitive tests improved the classification performance

up to 91.95% true positive rate for healthy participants, 86.21%—for MCI and

80.18%—for dementia cases.

Conclusion: The machine learning model, when trained on the cases of this

of that group, describes a disease-specific SFA pattern. The pattern serves as a

“stamp” of the disease reflected by the model.

KEYWORDS

brain morphometry, structural-functional association, artificial intelligence,

neurophysiological test, cognitive score, aging, cognitive decline, Alzheimer’s

disease

1. Introduction

Studies in cognitive neuroscience aim to explain the

operation of the human mind (Thagard, 2013). For this,

researchers construct different models predicting brain

functioning. The models provide a potential explanation

of how the brain processes information although not all

of them implement neuron-like elements (Forstmann and

Wagenmakers, 2015; Palmeri et al., 2017). The research

questions and the study design determine the conceptual

architecture of the models (Beer, 2000). The purpose of our

research is to distinguish normal aging from the accelerated one

which manifests itself with dementia. We also aim to improve

the early-stage diagnostics of mild cognitive impairment (MCI).

The multimodal diagnostics seems to be one of the most

promising ways to reach the objective. It is more sensitive

Abbreviations: AD, Alzheimer’s disease; ADAS, Alzheimer’s disease

assessment scale; ADAS-cog, ADAS-cognitive subscale; ADNI,

Alzheimer’s disease neuroimaging initiative; CN, cognitively normal

individuals; CSF, cerebrospinal fluid; DL, deep learning; DSST, digit

symbol substitution test; EEG, electroencephalography; GM, gray

matter; MAE, mean absolute error; MCI, mild cognitive impairment;

ML, machine learning; MMSE, mini-mental state examination; MoCA,

Montreal cognitive assessment; MRI, magnetic resonance imaging; PET,

positron emission tomography; RAVLT, Rey auditory verbal learning

test; SBM, surface-based brain morphometry; SFA, structure-function

association; Sn, sensitivity; Sp, specificity; SPECT, single-photon emission

computerized tomography; TMT, trail making test; VBM, voxel-based

brain morphometry; WM, white matter.

for identification and prognosis of Alzheimer’s disease (AD).

Therefore, this technique is suitable for screening and designing

early management strategies (Perrin et al., 2009). However,

the concept of multimodality is not clearly defined. In some

references it denotes the combined analysis of distinct structural

MRI sequences (Kang et al., 2020). However, the comprehensive

analysis of the brain structure is more informative when the

data on the brain metabolism are considered (Yu et al., 2012;

Willette et al., 2014; Forouzannezhad et al., 2018; Lin et al.,

2020). The invasiveness and high cost of the metabolic studies

make them non-applicable for screening purposes. Contrarily,

a combination of structural and functional data seems to be a

reasonable alternative: it is easy to conduct, more affordable,

and reliable (Sabbagh et al., 2017). Cognitive examination

can improve the diagnostic and predictive power of routine

clinical investigations such as MRI (Willette et al., 2014; Ottoy

et al., 2019; Lin et al., 2020), SPECT (Borroni et al., 2006;

Quaranta et al., 2018), and PET (Yu et al., 2012; Teng et al.,

2020). A combined study of structural and functional data

may provide understanding of the AD pathogenesis. The

multimodal diagnostics should benefit from the advantages of

various methods and overcome their disadvantages. Such an

approach continues to be a subject of the ongoing research

since the existing models of multimodal screening have a set

of limitations, such as complex feature engineering (Lu et al.,

2018; Kang et al., 2020), low accuracy (Quaranta et al., 2018),

and low practical value due to the small sample size. These

weaknesses limit translating the models into clinics (Drzezga

et al., 2005; Zhang et al., 2011; Yu et al., 2012). Meanwhile,

our idea is to focus on the change both in the brain structure

and function in normal and accelerated aging. We suppose
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to overcome the aforementioned limitations by proposing

new multimodal diagnostic models. To use the advances of

the multimodal diagnostics, we resort to structure-function

association (SFA) models that can justify distinct SFA patterns

in healthy individuals, patients with MCI and AD (Habuza et al.,

2021a,b,c,d,e, 2022). The practical value of these findings is

promising: they can be used to construct multimodal diagnostic

machine learning (ML) algorithms.

2. Objectives

We intend to get an insight into normal and accelerated

brain aging by developing ML models to predict individual

performance in neuropsychological and cognitive tests from

brain MRI. With these models we endeavor to look for brain

SFA patterns indicative of MCI and Alzheimer’s dementia. We

suppose that the combined analysis of imaging and functional

modalities will improve diagnostics of neurodegenerative

diseases with advanced data science techniques.

We will compare the diagnostic images and the results

of neuropsychological and cognitive assessment with ML and

deep learning (DL) techniques to determine if there are

distinct patterns of age- and diseases-related change in brain

morphometry, functioning, and SFA. Alternatively, if there are

no patterns of this kind, there should be a common mode

of structural deterioration and cognitive decline for aging and

pathology. In this case some threshold level indicative of the

disease should be established. ML will allow us to distinguish

normal aging from pathology with the help of a classification

model. We address the following sub-objectives:

1. Study dynamics of performance in cognitive and

neuropsychological tests in healthy individuals, patients

with MCI and dementia.

2. Build models of brain structure-function associations in

cognitively normal individuals, patients with MCI and

dementia.

3. Work out an approach for classification of examinees

according to SFA patterns into the cohorts of the cognitively

normal elderly, patients with MCI and dementia.

3. Materials and methods

3.1. Study participants

For the study, we used data from a publicly available

Alzheimer’s Disease Neuroimaging Initiative database (ADNI).1

1 Data used in preparation of this article were obtained from ADNI

database (adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or provided

data but did not participate in analysis or writing of this report. A complete

ADNI1 includes 400 subjects diagnosed with MCI, 200 subjects

with early AD, and 200 elderly control subjects in the 55–

90 age range (ADN, 2019, 2022). See inclusion and exclusion

criteria in ADNI general procedures manual (ADNI General

Procedures Manual, 2004). The ADNI was launched in 2003

as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been

to test whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. In this study, we

acquired MRI and clinical information on all the cases collected

to ADNI1 dataset in a cross-sectional and longitudinal study

design. This provided us with a total number of 1,337 study

cases from 800 subjects. We excluded 35 cases from our study

because of a failure of FreeSurfer to segment the brain MRI. We

also excluded all patients who changed the group (e.g., CN to

MCI or dementia) so convertible cases did not affect the study

results. Examinations of the same subjects in the same study

group were carried out with a certain time interval. Logically,

the results of these examinations reflected either the normal or

the pathological class-specific SFA pattern during aging. The

findings did not present the individuals at a common age or

disease stage. In this way, there was no direct data leakage

between training and testing datasets within a cohort. Same

subjects in the same study group had no effect on test results

when prediction was performed with unseen data from other

classes. For the remaining 1,302 cases we collected demographic

data, pre-processed T1-weighted MRI files and results in the

following cognitive tests: the mini-mental state examination

(MMSE), the Rey auditory verbal learning test (RAVLT), part

B of the trail making test (TMT), the digit symbol substitution

test (DSST), the Alzheimer’s disease assessment scale-cognitive

subscale (ADAS-cog). See Table 1 for the descriptive statistics on

the study cohorts.

3.2. Brain morphometry and machine
learning

To process T1-weighted brain images we used an open

source toolkit FreeSurfer. In particular, we calculated subcortical

and cortical parcellation volumes—voxel-based morphometry

data (VBM) and surface-based morphometry data (SBM)—with

FreeSurfer 7.1.0 software (Freesurfer Software Suite, 2011). As

a reference we used Desikan-Killiany atlas. For each segmented

area of the brain we calculated the absolute value as the average

value between the right and left-side volume. Then we expressed

the data in percentage to the total intracranial volume. The

relative volumes of various brain areas were the predictors of

listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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TABLE 1 Demographics, cognitive performance in study cohorts.

Total Cognitively normal MCI Dementia p1−3

n = 1,302 n1=287 (22.04%) n2=646 (49.62%) n3=369 (28.34%)

Years
Age 75.74 [71.7–80.7] 76.62± 5.62 75.25± 7.16 75.93± 7.37 0.0933785

Education 15.58 [13.0–18.0] 16.13± 2.91 15.76± 2.99 14.85± 3.21* 9.08991e-08

Sex
Women 522 (40.09%) 134 (46.69%) 215 (33.28%) 173 (46.88%)

4.19707e-06
Men 780 (59.91%) 153 (53.31%) 431 (66.72%) 196 (53.12%)

Race

Whites 1,210 (92.93%) 261 (90.94%) 603 (93.34%) 346 (93.77%)

0.198438Blacks 60 (4.61%) 21 (7.32%) 22 (3.41%) 17 (4.61%)

Asians 30 (2.3%) 5 (1.74%) 19 (2.94%) 6 (1.63%)

Test

result

ADAS-cog 19.87 [11.7–26.3] 8.73± 4.14 18.82± 6.6 30.37± 8.97 2.2404e-165

MMSE 26.18 [24.0–29.0] 29.06± 1.09 26.91± 2.2 22.66± 3.03 2.1560e-155

RAVLT 30.44 [23.0–37.0] 43.2± 9.76 29.79± 8.86 21.67± 7.77 3.7071e-120

DSST 36.24 [27.0–45.0] 46.77± 11.06 37.37± 11.1 26.05± 12.41 2.72808e-83

TMT 138.13 [75.0–187.0] 85.03± 43.18 128.48± 72.56 200.96± 88.57 2.20487e-73

p− value is marked in bold if difference among groups is statistically significant (p < 0.05).

Statistical data are reported as IQR,Mean± SD, or absolute number of cases and their percentage in studied cohort.

If the distribution of metrics differs significantly (p < 0.05) for an index compared to other ones, itsMean± SD is marked with an asterisk.

the ML models which we trained to compute cognitive scores

and results in psychophysiologic tests. The ML algorithms were

trained on each study cohort separately: cognitively normal

individuals (CN), patients with MCI and AD. Ranking the

predictors by their informative values provided an insight into

SFA patterns which can be either similar or different in these

cohorts. If the SFA patterns differ among the studied groups,

one can find the SFA model which describes the individual

structural and functional data the best. This means, we can

train an ML classification model to distinguish healthy aging

from MCI or AD thus improving their early diagnostics. To

combine the predictions from multiple contributing ensemble

member models, we will use an ensemble ML technique

called blending.

3.3. Cognitive and neuropsychological
tests

The purely pre-symptomatic and early stages of dementia

are likely to be identified by neuropsychological testing. The

existing dementia risk models mainly comprise demographics,

subjective cognitive complaints, lifestyle factors, health state

estimates, and other variables (Hou et al., 2019). Cognitive test

scores or neuropsychological test batteries are incorporated as

predictors into many models of developing dementia. The most

commonly used cognitive scores are MMSE (Folstein et al.,

1983), RAVLT (Rey, 1964), ADAS-cog (Mohs, 1994), DSST

(Wechsler, 1981), TMT (Spreen et al., 1998), Clinical Dementia

Rating (Morris, 1997), Logical Memory Tests, Immediate and

Delayed Recall (Wechsler, 1987).

We resorted to the following tests namely because of their

availability in the ADNI1 dataset and also because of the ability

to cover the global cognition (the first two tests) and some

cognitive subdomains (the last three ones):

1. ADAS-cognitive Subscale (ADAS-cog) is an informative tool

for monitoring neurodegeneration in clinical routine practice

(Zhu et al., 2018). The test distinguishes between MCI and

mild AD with sensitivity (Sn) of 0.86 and specificity (Sp)—

0.89 (Zainal et al., 2016). It can also identify “questionable

dementia” as its results in immediate recall and object naming

tasks correlate with performance in Category Verbal Fluency

Test (Lam et al., 2006).

2. MMSE is the most common method for diagnosing cognitive

impairment in a single or multiple domains (Foley et al.,

2018). Although it detects various types of dementia with

high Sn and Sp (over 90%), the test should be accompanied

by a full and detailed assessment of the patients (Fountoulakis

et al., 2000). For this, clinicians use other tests (e.g., TMT,

DSST) (Godefroy et al., 2011).

3. TMT provides information on neuropsychological

conditions; therefore it is used for diagnosing

neurodegenerative diseases in combination with other

tests and diagnostic modalities (Godefroy et al., 2011; Ciulli

et al., 2016; Olchik et al., 2017). Its clinical implication

is multifold. First, TMT helps to define the impaired

cognitive domain and improves the assessment with MMSE

or Montreal Cognitive Assessment (MoCA) (Godefroy

et al., 2011). Second, there is evidence that the inclusion of

TMT-B boosts the performance of the models discriminating

AD against non-AD MCI based on CSF and structural

biomarkers (Ewers et al., 2012). Third, the test can sensitively
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FIGURE 1

Preparation of proposed SFA classification model and its application to screening for early stage MCI and Alzheimer’s disease.

distinguish a case of mild AD from amnestic MCI and

healthy aging (Bottiroli et al., 2021).

4. RAVLT examines verbal learning and memory. It is capable

of detecting cognitive impairment in multiple sclerosis (Beier

et al., 2019). The test differentiates between AD dementia and

behavioral variant of fronto-temporal dementia (Ricci et al.,

2012) with high Sn and Sp (over 81%). It also helps physicians

to distinguish AD from Lewy bodies dementia (Bussè et al.,

2017).

5. DSST identifies early stages of dementia (Proust-Lima et al.,

2007) and MCI by detecting working memory impairment

and multimodal amnesia (Ciafone et al., 2021). The test also

shows significantly impaired performance in early dementia

with Lewy Bodies (Botzung et al., 2019).

The results in ADAS-cog and RAVLT are presented with

a set of dependent variables: ADASQ4, ADAS11, ADAS13 and

RAVLTimmediate, RAVLTlearning , RAVLTforgetting (ADN, 2022).

In a recent study, we showed that the associations between CSF%

and performance in ADAS-cog and RAVLT are stronger for

ADAS-13 and RAVLTimmediate compared to the other scores

in these tests (Habuza et al., 2022). For this reason we used

ADAS-13 and RAVLTimmediate for further analysis.

3.4. Methodology of study

To complete the first subobjective, we assessed change of

the cognitive and neuropsychological test scores in normal and

accelerated aging. We explored the age-related variability of

cognitive scores in the tests commonly used either to diagnose

MCI and dementia or to improve the accuracy of multimodal

diagnostics. The first group of the tests reflects the global

cognitive functioning and it includes MMSE and ADAS-cog.

The second group of the tests covers a few cognitive domains,

i.e., information processing in DSST, memory in RAVLT,

information processing in TMT. To present change in the test

scores with the disease progression, we built distribution of the

test results over age with linear trendlines and 95% confidence
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intervals for the study cohorts. Then we conducted comparative

analysis of the three groups. We employed non-parametric

statistical methods, i.e., a Chi-square test for the quantitative

features and Kruskal-Wallis test for the continuous ones.

To reach the second subobjective, we constructed regression

models predicting functional performance in cognitive tests

from brain radiomics. We employed a ridge regression model

with linear least squares function and L2-norm regularization.

To control regularization strength, we set the parameter to the

value of α = 0.5. The vulnerability of distinct neuronal cells to

atrophy in accelerated aging differs among distinct cell groups

and brain regions. Reasonably, SFA can have features specific to

pathology. For checking this, we trained the regression models

on the three study cohorts independently. The predictors of

the model were the data acquired from voxel- and surface-

based brain morphometry. The voxel-based morphometry is

a computational approach to neuroanatomy that measures

differences in local concentration of brain tissue via a voxel-wise

comparison of multiple brain images. The surface-based brain

morphometry is a complementary structural imaging analysis

for quantifying gray matter abnormalities. The feature selection

technique allowed us to identify the most valuable structural

neuroimaging measures. We employed ensemble tree-based

estimators such as Random Forest, and Extra Trees, AdaBoost,

Gradient Boosting. These models were trained one by one on

the data of the studied groups. We used impurity-based feature

importance to rank the features according to their predictive

potential. The models reflect SFA patterns specific for each

study cohort.We also looked for significant correlations between

cortical parcellation volumes and test scores in the cohorts to

investigate neuroanatomical differences in the cognitive status.

The third subobjective was to assess the diagnostic value of

the proposed models. We tried to classify individual findings

according to the model which describes the case best (see

Figure 1). The idea was that the ML model, when trained on

the cases of this of that group, describes a disease-specific

SFA pattern. The pattern serves as a “stamp” of the disease

on which the model was trained. Therefore, one can find the

FIGURE 2

(A) MMSE, (B) ADAS13, (C) RAVLT scores, results in (D) DSST, (E) TMT, and (F) proportion of gray matter volume to total intracranial volume in

group of cognitively normal adults and patients with MCI or dementia. The figures show linear trendlines with 95% confidence intervals.
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“stamp” which fits the case best. We trained ridge regression

models on groups of healthy people and patients diagnosed with

MCI and dementia to predict cognitive test results. Then we

calculated the difference between the predicted and actual test

scores of the observed patient. The minimal difference identified

the group. We followed these steps with results in MMSE,

ADAS, RAVLT, DSST, and TMT. Afterwards we employed the

majority voting technique to assess the performance of the

multigroup classification.

3.5. Hardware and software

The calculations were done with the Linux Ubuntu 18.04

workstation with 24 CPU cores and two NVIDIA GeForce

GTX 1080 Ti GPU with 11 GB GDDR5X memory each

using programming language Python, and its libraries for Data

Processing, ML, and Data visualization, such as scikit-learn,

NumPy, Pandas, Matplotlib, and Seaborn.

4. Results

4.1. Performance in cognitive and
neuropsychological tests in healthy
individuals, patients with MCI and
dementia

To study how healthy individuals and patients with

cognitive impairment perform, we carried out exploratory

analysis of ADNI dataset. The test paradigm and the cognitive

slowing due to normal or accelerated aging may influence

individual scores. The functional data covering last decades

of life, from 55 to 90’s, show difference between the global

cognition scores and results in test assessing a few cognitive

subdomains. The global cognition ability measured with MMSE

and ADAS13 remains stable with age in all the study cohorts (see

Figures 2A,B). In contrast to this, we observe a steady decline

in neuropsychological tests—DSST and TMT—with advancing

age (see Figures 2D,E).

The rate of neurocognitive slowing is higher in cognitively

preserved individuals compared to the patients with cognitive

deterioration (see Table 2). If approximated to the age of over

100 years, the lines for the three cohorts will end up in a common

point. The trends for performance in these tests resemble the

dynamics of the gray matter atrophy (see Figure 2F). The results

in RAVLT have age-related change roughly similar to the global

cognitive scores but with a slight tendency toward convergence

of the trends for the cognitively normal individuals, patients

with MCI and those who suffer from AD. T
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TABLE 3 Performance of models trained on cognitively preserved population, subjects diagnosed with MCI, or dementia with adjustment to the

range of values (MAE/range, %).

Group Data MMSE ADAS p1−2 RAVLT TMT DSST p3−5

CN

VBM 4.5± 0.23 5.04± 0.22 1.84e-95 10.62± 0.5 10.57± 0.68 10.81± 0.51 2.99e-142

SBM 4.61± 0.23 4.96± 0.22 1.84e-95 10.38± 0.49 10.75± 0.67 10.24± 0.53 4.15e-131

VBM+SBM 4.61± 0.23 4.94± 0.22 1.84e-95 10.07± 0.48 10.62± 0.66 10.23± 0.51 1.92e-129

MCI

VBM 9.28± 0.29 7.62± 0.22 3.63e-211 9.52± 0.3 20.13± 0.65 10.95± 0.33 1.43e-212

SBM 9.0± 0.28 7.48± 0.21 2.46e-206 9.59± 0.31 18.8± 0.59 10.12± 0.33 9.38e-210

VBM+SBM 9.06± 0.28 7.41± 0.21 1.65e-206 9.46± 0.3 18.81± 0.59 10.03± 0.32 1.01e-209

Dementia

VBM 13.22± 0.54 10.3± 0.42 6.98e-121 8.65± 0.33 26.97± 0.75 12.67± 0.46 2.14e-187

SBM 12.67± 0.54 9.09± 0.42 3.27e-99 7.97± 0.34 25.75± 0.76 11.03± 0.42 3.43e-172

VBM+SBM 12.78± 0.55 9.11± 0.41 1.75e-92 7.9± 0.33 25.9± 0.77 10.85± 0.42 1.94e-171

*VBM, voxel-based morphometry; SBM, surface-based morphometry.

4.2. Distinct structure-function
associations in normal aging, MCI and
dementia

In the second subobjective, we constructed regression

models that predict functional performance in the tests from

brain radiomics. Since structure-function association may have

features specific to pathology, we trained the regression models

on three study cohorts separately. As the input of the model

we used the data acquired with voxel- and surface-based brain

morphometry.

Examining the feasibility of employing brain morphometry

for predicting neurofunctional performance in CN, MCI, and

dementia cohorts, we designed an ML regression model. As the

test scales differ in size, we adjusted the mean absolute error

(MAE) to the range values of the tests (MAE/range, %). This

allowed us to compare the accuracy of the algorithms trained on

MMSE, ADAS-cog, RAVLT, TMT, and DSST. The performance

of these algorithms is presented in Table 3. The test results in

MMSE can be predicted much more accurately than in other

tests (MAE/range = 4.5 ± 0.23 in the CN group). Despite a

markedly higher mistake of the model for the ADAS-cog score

(p = 1.84e − 95), its prediction also had credible performance

(MAE/range = 5.04 ± 0.22 in the CN group). The error of

the RAVLT, TMT, and DSST score prediction was significantly

higher (10.62 ± 0.5, 10.57 ± 0.68, and 10.81 ± 0.51). The

dissimilarity in the accuracy of the model goes in line with

the trends described in the previous subsection. In MMSE and

ADAS-cog the trendlines are parallel and do not intersect. The

same trends for RAVLT, TMT, and DSST merge if approximated

to future life.

We ranked the structural predictors according to the

information gain value (see Figures 3–7). The column charts

show that the structural determinants of cognitive performance

are not equal among the tests. They also differ among the

study cohorts. For example, the top valuable predictors of

MMSE score are the volumes of the total brain, cerebral cortex,

accumbens, cerebral white matter, inferior lateral ventricles,

and hippocampus. However, the results in TMT have a weaker

association with the brain structures listed above. The structural

predictors of cognitive scores and results in neuropsychological

tests are not identical in healthy individuals and those with

cognitive impairment. In such a way, the top valuable predictors

are specific to the test and to the level of decline in functioning.

In each study cohort we found clusters of cortical

parcellations closely associated with performance in cognitive

tests. The volume, surface area of the clusters and their

number differ evidently among the studied cohorts. This

is because each SBM metrics provides unique information

regarding cortical anatomy and possibly different SFA

patterns (Riccelli et al., 2017).

4.3. Classification of examinees by fitting
models of brain SFA for healthy
individuals, patients with MCI and
dementia

The highest classification accuracy is achieved with the

model trained to predict MMSE from VBM (see Figure 8). In

the cognitively normal cohort, the model identifies 85.06% of

individuals as healthy subjects, and relatively small portions

(14.94 and 1.15%) are misclassified as patients with MCI or

dementia. The true prediction rate reaches 86.96% in the MCI

group. The least accurate classification is observed in the group

of the demented patients: it misclassifies over 26% of them.

This is the major limitation of the constructed classification

system. The diagnostic algorithm based on ML prediction

of MMSE from SBM is almost as accurate as the previous

classification (see Figure 8B). The percentage of misclassified

cases in the normal cohort is slightly higher. Still, none of the

cognitively preserved individuals are misclassified as demented.

When VBM and SBM predictors are used in combination, the

performance does not increase (see Figure 8C). Unexpectedly,
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the true predictive rate drops to 79.31 and 72.07% for the

cognitively normal and demented population respectively. The

inclusion of SBM predictors to the model does not boost

the accuracy.

Classification based on themodel trained to predict ADAS13

from VBM detects the demented patients more accurately

than the other considered models at the level of 78.38% true

prediction rate. The performance for the CN class is weaker in

all the models predicting ADAS13.

The application of the majority voting technique to

models predicting results in MMSE, ADAS, and RAVLT

improved the classification performance (see Figures 8D–F).

We observe the highest classification performance of the

algorithm trained on SBM data for the CN group with the

true positive rate of 91.95% (see Figure 8E). The accuracy of

identifying MCI is 83.3%. The model trained on VBM data

shows the best performance for dementia cases (true-positive

rate of 80.18%, see Figure 8D). The discrimination of MCI

cases from the aforementioned groups is most accurate in

the model trained on both types of predictors—VBM and

SBM (86.21%).

5. Discussion

5.1. Patterns of brain structure-function
association indicative of MCI and
dementia

Researchers studied age-related functional change in the

brain and showed neuro-cognitive slowing with different tests

and approaches (Statsenko et al., 2019, 2020, 2021g,h,i; Belghali

et al., 2020; Gorkom et al., 2021). In this study we explored the

age-related variability of cognitive scores in the tests that are

most commonly used either to diagnose MCI and dementia or

to improve the accuracy of multimodal diagnostics. We started

with the tests of global cognitive functioning: MMSE and ADAS-

cog. The distribution of the test results over age is shown

in Figures 2A,B. As ADNI dataset contains follow-up studies

of healthy people and patients with cognitive impairment,

one can judge on the dynamics of cognitive performance by

looking at the diagrams. The trends are horizontal for the

performance in MMSE and ADAS-cog in all study groups. This

means that the global cognitive functioning changes slightly

FIGURE 3

Brain structures ranked according to information gain value for MMSE score prediction. Inflated cortical representations showing significant

correlations between cortical volumes and test score.

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2022.943566
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Statsenko et al. 10.3389/fnagi.2022.943566

FIGURE 4

Brain structures ranked according to information gain value for ADAS13 score prediction. Inflated cortical representations showing significant

correlations between cortical volumes and test score.

with age in the cognitively normal population. It also remains

stable across the disease course. Though there are patients with

reversible or progressive MCI, the number of such cases is

quite low.

The second group of tests covers a few cognitive domains,

i.e., information processing in DSST, memory in RAVLT,

information processing in TMT. Scores in RAVLT test

are quite stable in normal aging and across the disease

course with a slight trend toward lowering in all the

study groups (see Figure 2C). The pace of neurocognitive

slowing is moderately higher in the CN group and MCI

patients. Thus, the average result for all the groups would

reach a common value if the observation lasted several

more decades.

The trendlines on Figures 2D,E show clear signs of

malfunctioning in several cognitive domains assessed with DSST

and TMT tests. The performance worsens with time. For this

reason, the trendlines of CN, MCI, and AD groups converge at

the approximated point of 100 years of age.

As seen from the diagrams in Figures 2D,E the trendlines of

the performance in neuropsychological tests (TMT and DSST)

and the degeneration of the graymatter show the same dynamics

in the correspondent cohorts (see Figure 2F). But the slopes

for the gray matter volume adjusted to the total intracranial

volume are steeper than the trendlines for the results in DSST or

TMT. Presumably, brain plasticity helps an individual to adjust

to aging and disease and compensates for the loss of the gray

matter volume.

5.2. Models of brain SFA in cognitively
normal individuals, patients with MCI and
dementia

SFA models projecting cognitive scores achieved different

accuracy in CN, MCI, and dementia groups (see Table 4).

To explain this fact, we analyzed mechanisms of developing

dementia. The majority dementia cases arise from protein

aggregation disorders (e.g., the accumulation of β-amyloid,

τ -protein, etc.). Generic variability in the expression level

of the deposited protein is important in pathogenesis of

neuronal diseases. It accounts for different solubility of the
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FIGURE 5

Brain structures ranked according to information gain value for RAVLT score prediction. Inflated cortical representations showing significant

correlations between cortical volumes and test score.

aggregation-prone protein and the efficiency of clearance

mechanisms that keep misfolded proteins in check. Besides,

the clinical appearance of dementia varies because of selective

neuronal and regional loss that differs among misfolding

diseases (Fu et al., 2018).

In all the tests, the informative value of brain structures in

the prediction of cognitive scores differs by the study group

(CN, MCI, dementia). This justifies that the healthy cohort

and patients with a pathology have specific SFA patterns.

We analyzed the patterns in the demented patients of ADNI

dataset and discussed the findings. As AD accounts for the

majority of dementia cases, we found the structures vulnerable

for change in β-amyloidopathy. Other neurodegenerative

diseases selectively damage different groups of neuronal

cells and brain regions, which would result in other SFA

patterns. To explain the structural determinants of cognitive

performance, we analyzed the involvement of definite

brain areas in the tests (see Tables 5, 6). The structural

predictors of cognitive scores are described in details in

Supplementary material.

5.2.1. MMSE, ADAS-cog, RAVLT

The prediction of neuropsychological profiles from

radiologic and nuclear medicine findings was the issue of

recent studies by other authors. They used different imaging

modalities, e.g., resting-state functional MRI (Duc et al., 2020),

structural MRI (Kovacevic et al., 2009; Stonnington et al., 2010;

Yan et al., 2015; Moradi et al., 2017; Beyer et al., 2019; Imani

et al., 2021), and PET (Zhang et al., 2012; Beyer et al., 2019).

In those studies, neuroscientists trained regression models to

computeMMSE, ADAS− cog, and RAVLTimmediate scores at the

time of examination (Duc et al., 2020), in 6 months (Kovacevic

et al., 2009), 12 months (Imani et al., 2021), 24 and 36 months

after it (Zhang et al., 2012). The authors also built SFA models

but for different purposes, i.e., they aimed to forecast the disease

course, to calculate the MMSE score and diagnose AD disease

status from MRI. They wanted to get the MMSE score without

trained clinicians. In contrast, we proposed to combine the

findings collected by radiologists and qualified neurologists for

the advanced early diagnostics of MCI or AD. We did not aim

to forecast the disease progression.

Frontiers in AgingNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2022.943566
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Statsenko et al. 10.3389/fnagi.2022.943566

FIGURE 6

Brain structures ranked according to information gain value for DSST score prediction. Inflated cortical representations showing significant

correlations between cortical volumes and test score.

In our study, the most accurate model (the one with the

minimalMAE/max.score) predictsMMSE score. This model has

reputable performance: the minimal MAE in AD population

(2.3 ± 0.1) is lower than in the study by Duc et al. (2020).

The minimal MAE of the RAVLTimmidiate models in MCI is

6.53±0.21, in AD—5.45±0.23. This is lower than in the study by

Moradi et al.: 6.92± 0.035 and 5.75± 0.07, respectively (Moradi

et al., 2017). The authors did not built the models for healthy

adults. In our study, such models have optimal performance and

help us to distinguish individuals without the disease from MCI

and AD cohorts. The computations of ADAS− 13 values in our

study has the minimal MAE of 3.18 ± 0.14 in CN, 4.77 ± 0.14

in MCI and 5.45 ± 0.23 in dementia. The accuracy is close

to the mean performance metrics of the models trained by V.

Imani to predict the score changes in the same scale for cognitive

assessment: 3.07, 3.87, and 5.01 (Imani et al., 2021).

5.2.2. DSST and TMT tests

Researchers studied neuroanatomical predictors of results

in DSST (Bruno et al., 2016; Lazari et al., 2021) and TMT

tests (Van De Pol et al., 2007; Oosterman et al., 2010). These

studies were focused on the associations of MRI measures

with cognitive performance and confirmed a tight association

between medial temporal lobe atrophy and DSST, ADAS-

cog scores (Van De Pol et al., 2007) as well as TMT-B

performance (Oosterman et al., 2010). They also justified

the hippocampal integrity which was derived from the ratio

of parenchyma volume over total volume as an informative

predictor of future changes in general cognitive ability. Those

changes were assessed with composite cognitive score calculated

from MMSE, DSST, and RAVLT delayed recall (Bruno et al.,

2016). The authors of the aforementioned studies highlighted

the importance of structural covariance in the prediction of

individual differences in executive function skills. However,

they did not report the performance of a regression model

which would accurately forecast the test from MRI or other

structural findings. Thus, our paper adds to the growing

literature on the neural correlates of cognition in adults and

identifies neuroanatomic coupling as a biological substrate that

may contribute to executive function and dysfunction in MCI

and AD.
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FIGURE 7

Brain structures ranked according to information gain value for TMT score prediction. Inflated cortical representations showing significant

correlations between cortical volumes and test score.

5.3. Classification of examinees into
cohorts according to the SFA pattern

The multimodal approach is supposed to be more accurate

than the unimodal one. The combined analysis of medical

findings with individual risks advance the diagnostics and

support the personalized therapy. The recent findings by other

authors as well as our results convincingly show this (Habuza

et al., 2021a; Statsenko et al., 2021a,b,c, 2022; Al Zahmi et al.,

2022).

5.3.1. Accuracy of unimodal approach

5.3.1.1. Cognitive tests

Due to the limited availability of other diagnostic methods,

cognitive tests continue to be the most commonly used screening

for neurodegenerative diseases. In the optimal therapeutic

tactics, clinical psychologists test patients forMCI and dementia.

Cognitive tests are time consuming, their reliability is disputable.

According to the previous studies, the accuracy of the tests

distinguishing MCI from healthy aging ranges from 58 to 90%

(Tóth et al., 2018; Müller et al., 2019; Fernández-Fleites et al.,

2021; Rashedi et al., 2021). Because of the inconsistent findings

clinicians cannot rely on cognitive scores as a single diagnostic

modality (Statsenko et al., 2021e,f). Physicians order magnetic

resonance imaging (MRI) examination to evidence the diagnosis

and to perform differential diagnostics.

5.3.1.2. Neuropsychological tests

The optimal diagnostic modality should be reliable,

economically affordable, operator-independent, easy, and quick

to perform. Neuropsychological tests partially meet the criteria

mentioned above: they are not expensive, easy to administer,

quick to pass, and to assess the results. They can aid in

differentiating MCI from AD and identifying cognitive deficits

related to preclinical AD and MCI (Collie and Maruff, 2000).

The tests differ significantly in the accuracy of classification

of MCI patients and cognitively intact adults. The sensitivity

of dementia diagnostics with MMSE ranges from 44 to over

80% (Kalbe et al., 2004; Shankle et al., 2005; de Jager et al.,

2009). Studies which compared MMSE with other cognitive
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FIGURE 8

Confusion matrices of multigroup classification based on best fit to model predicting cognitive scores from voxel-based (A,B) and

surface-based morphometric data (C,D) or combination of them (E,F).

tests led to conflicting findings. In a study, the sensitivity of

MCI detection with the Persian version of MoCA was 86 and

72% with MMSE (Rashedi et al., 2021). Another study reported

MMSE to be the most sensitive instrument followed by the delay

recall test, and the Montreal Cognitive Assessment (Hemmy

et al., 2020). The traditional cut score of 26 in MoCA showed

the best classification accuracy (Rossetti et al., 2019). A delayed

recall in the verbal fluency and episodic memory tests were

shown to be reliable predictors of AD (Arnáiz and Almkvist,

2003).

5.3.1.3. MRI

Although there are structural similarities in normal aging

and MCI patients, MRI remains a method of choice in

diagnosing MCI (Taheri Gorji and Kaabouch, 2019; Statsenko

et al., 2021d; Uzianbaeva et al., 2021). Structural MRI detected
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TABLE 4 Metrics of models trained on cognitively preserved population, subjects diagnosed with MCI or dementia (MAE).

Test Data
CN MCI Dementia

p-value

Mean ± Std CI Mean ± Std CI Mean ± Std CI

MMSE

VBM 0.81± 0.04 [0.73–0.89] 1.67± 0.05 [1.57–1.77] 2.38± 0.1 [2.19–2.57] 3.97e-239

SBM 0.83± 0.04 [0.75–0.92] 1.62± 0.05 [1.52–1.72] 2.28± 0.1 [2.09–2.47] 1.34e-234

VBM+SBM 0.83± 0.04 [0.75–0.91] 1.63± 0.05 [1.53–1.73] 2.3± 0.1 [2.11–2.49] 8.23e-232

ADAS-cog

VBM 3.24± 0.14 [2.96–3.51] 4.9± 0.14 [4.62–5.17] 6.63± 0.27 [6.09–7.16] 6.53e-239

SBM 3.19± 0.14 [2.91–3.46] 4.81± 0.14 [4.53–5.08] 5.85± 0.27 [5.32–6.38] 5.12e-230

VBM+SBM 3.18± 0.14 [2.9–3.45] 4.77± 0.14 [4.5–5.03] 5.86± 0.26 [5.35–6.38] 1.44e-227

RAVLT

VBM 7.33± 0.35 [6.65–8.01] 6.57± 0.21 [6.16–6.98] 5.97± 0.23 [5.52–6.42] 2.86e-231

SBM 7.16± 0.34 [6.5–7.82] 6.62± 0.21 [6.2–7.04] 5.5± 0.23 [5.04–5.96] 4.14e-220

VBM+SBM 6.95± 0.33 [6.31–7.6] 6.53± 0.21 [6.12–6.93] 5.45± 0.23 [5.0–5.9] 2.48e-213

TMT

(part B)

VBM 28.32± 1.83 [24.73–31.9] 53.94± 1.73 [50.55–57.33] 72.28± 2.02 [68.32–76.24] 2.26e-229

SBM 28.81± 1.81 [25.26–32.35] 50.38± 1.57 [47.29–53.46] 69.0± 2.03 [65.01–72.99] 5.56e-184

VBM+SBM 28.47± 1.77 [25.0–31.95] 50.4± 1.58 [47.3–53.49] 69.41± 2.07 [65.36–73.47] 1.38e-180

DSST

VBM 8.43± 0.4 [7.65–9.21] 8.54± 0.26 [8.03–9.04] 9.88± 0.36 [9.18–10.57] 4.88e-230

SBM 7.99± 0.41 [7.19–8.79] 7.89± 0.25 [7.4–8.39] 8.6± 0.33 [7.95–9.24] 3.28e-192

VBM+SBM 7.98± 0.4 [7.19–8.77] 7.82± 0.25 [7.32–8.31] 8.46± 0.33 [7.81–9.1] 6.89e-187

*VBM, voxel-based morphometry; SBM, surface-based morphometry.

change in the brain in MCI patients at early stage with 78.8%

Sn and 77.1% Sp. The performance of classification algorithms

was boosted by nearly 20% when structural MRI was combined

withmean diffusivity and fractional anisotropyMRI (Kang et al.,

2020). Since volumetric change in the hippocampus is a marker

of AD, it can also serve as a sign of MCI. Models trained on

volumetric measures of the hippocampus distinguished between

MCI and healthy groups with 69% Sn and 73% Sp.When trained

on combined volumetric data for the hippocampus and other

brain regions, the model had a lower Sn—66% (Westman et al.,

2011). Abnormal thinning of the cortex is another marker of

MCI or AD. A study showed that 17 structures could be used to

classify early MCI patients and healthy controls. With the MCI

progression, the number of informative brain regions increased

to 22. These features could classify various stages of MCI and

healthy controls with nearly 75% Sn and Sp depending on

algorithms (Rallabandi et al., 2020).

Reporting and classifying cases with regard to the pathology

is a challenging task for radiologists and for computer vision

systems. For instance, the accuracy of identifying healthy

examinees with structural MRI modalities was around 70–73%

(Westman et al., 2012; Kang et al., 2020). It was roughly similar

to the accuracy of detecting MCI progression to AD with the

same type of data (Westman et al., 2012; Willette et al., 2014).

Some authors reported the accuracy of the automatic segregation

between stable MCI and AD at the level of 85–86% (Basaia et al.,

2019). However, the number of reports with such optimistic

data is low and the reliable computer aided diagnostic system

is not yet available in the real clinical settings. In another study,

MRI differentiated between MCI and AD patients with Sn and

Sp of above 80% (Basaia et al., 2019). Recent studies suggested

that temporal lobe changes at early stage of AD and volumetric

measurements of the region could help in distinguishing

between MCI and AD. The models trained on MRI images of

the amygdala and hippocampus discriminated AD from MCI

with 87.2% Sn (Bottino et al., 2002). The performance of the

models trained exceptionally on the hippocampal images was

lower (Westman et al., 2011).

5.3.1.4. Nuclear medicine

Many researchers struggle to find sensitive markers that

would allow them to detect mild cognitive impairment (MCI) at

early stages or to identify the progression of MCI to AD. Some

authors report promising findings on the success in advanced

imaging modalities [positron emission tomography (PET),

single-photon emission computerized tomography (SPECT)]

and molecular markers [β-amyloid in cerebrospinal fluid

(CSF)]. For instance, the accuracy of early diagnostics of AD

with SPECT ranged from 70 to 90% in different references

(Seto et al., 2021; Wang et al., 2021). The same method can

also be used for the differential diagnostics between AD and

the frontotemporal dementia with the accuracy of about 84%

(Horn et al., 2009) and from vascular dementia with the accuracy

up to 75% (Dougall et al., 2004). Various radiotracers used in

the studies can account for disparity in the results. Despite the

high reliability of nuclear medicine findings, the applicability of

these study methods in the real clinical settings is low. No fund

covers a broad population screening for cognitive impairment

with such methods.
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TABLE 5 Structural brain correlates and cognitive functions involved

in MMSE, ADAS-cog, and RAVLT.

Test Cognitive functions Relevant brain structures

MMSE

Temporo-spatial orientation
Precuneus

Cortical gray matter

Memory recall

Precuneus

Intracranial arteries

Hippocampus

Cortical gray matter

Concentration
Superior parietal lobule

Cortical gray matter

Language

Pars triangularis

Hippocampus

Caudal middle frontal gyrus

Cortical gray matter

Visuospatial function

Precuneus

Superior parietal lobule

Fusiform gyrus

Caudal middle frontal gyrus

Cortical gray matter

Working memory

Precuneus

Intracranial arteries

Hippocampus

Cortical gray matter

ADAS-cog

Temporo-spatial orientation White matter lesions

Memory and new learning:

- Word recall

- Orientation

- Word recognition

- Memorizing test instructions

Mesial temporal lobe

White matter lesions

Inferior lateral ventricles

Hippocampus

Putamen

Amygdala

Entorhinal cortex

Language:

- Commands

- Spoken language ability

- Naming objects / fingers

- Word-finding difficulty

- Comprehension

White matter lesions

Inferior lateral ventricles

Putamen

Hippocampus

Praxis:

- Constructional praxis

- Ideational praxis

White matter lesions

RAVLT

Episodic memory

White matter lesions

Insula

Inferior lateral ventricles

Mesial temporal lobe

Inferior parietal lobe

Posterior cingulate cortex

Attention

Putamen

Inferior lateral ventricles

Mesial temporal lobe

Inferior parietal lobe

Posterior cingulate cortex

TABLE 6 Structural brain correlates and cognitive functions involved

in DSST and TMT.

Test Cognitive functions Relevant brain structures

DSST

Motor speed

White matter lesions

Caudate nucleus

Cortical gray matter

Inferior parietal cortex

Working memory

White matter lesions

Mesial temporal lobe

Hippocampus

Cortical gray matter

Inferior parietal cortex

Rostral middle frontal gyrus

Attention

White matter lesions

Mesial temporal lobe

Hippocampus

Caudate nucleus

Cortical gray matter

Inferior parietal cortex

Rostral middle frontal gyrus

Associative learning

White matter lesions

Mesial temporal lobe

Hippocampus

Cortical gray matter

Visuoperceptual abilities:

- Scanning

- Capacity to write/draw.

White matter lesions

Mesial temporal lobe

Hippocampus

Fusiform gyrus

Cortical gray matter

Inferior parietal cortex

TMT

Visuoperceptual abilities:

- Visual scanning

- Visual-conceptual tracking

- Visual-motor tracking

White matter lesions

Mesial temporal lobe

Inferior parietal cortex

Information processing
White matter lesions

Superior marginal cortex

Attention

White matter lesions

Mesial temporal lobe

Inferior parietal cortex

Motor speed
White matter lesions

Inferior parietal cortex

Memory:

- Working memory

- Rote memory

White matter lesions

Mesial temporal lobe

Inferior parietal cortex

5.3.1.5. Electrophysiology

EEG can detect pathologic change in the brain

electrical activity caused by cognitive impairment. It detects

abnormalities in synchronization/desynchronization and

coupling/decoupling of neural activities in AD patients.

Frontiers in AgingNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnagi.2022.943566
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Statsenko et al. 10.3389/fnagi.2022.943566

Quantitative EEG is a useful tool for differentiating between

AD, vascular dementia and healthy aging. The tool can

predict cognitive decline in healthy people with 90%

accuracy (Prichep et al., 2006). Recent studies showed a

possibility to stratify patients with Alzheimer’s dementia

and MCI with event-related EEG. Event-related potentials

predict the progression of MCI to AD with 70–78%

accuracy (Babiloni et al., 2020).

5.3.2. Multimodal diagnostics and screening

Some researchers reported a slight improvement in

classification performance after combining neuropsychological

test scores with MRI findings. The diagnostic model trained

on ADAS1, visual delayed recall and left hippocampal

measures had 84% Sn and 81% Sp (Liu et al., 2011). In

another study, models trained on MRI had 59.6% Acc,

on the results in neuropsychological tests—89.8% and

on a combination of MRI findings and test scores—

90.1% (Goryawala et al., 2015). These findings stay

in line with the hypothesis and final results of the

current study.

In contrast to our study, many researchers use the same

multimodal approach for other purposes: they forecast

the disease course from various types of diagnostic data.

For example, they build multimodal diagnostic models

for predicting MCI-to-AD conversion. A report showed

an insufficient accuracy of the classification based on

neuropsychological and SPECT data (33% Acc, 100% Sn,

33% Sp; Quaranta et al., 2018). In another study, a joint

analysis of memory scores and SPECT images had the Sn and

Sp of 77.8% (Borroni et al., 2006). A research team created

a multimodal system that incorporated the cognitive scores

and ApoE genotypes (62% Acc) with MRI, PET, and CSF

data (81% Acc) (Yu et al., 2012). A similar study used the

MRI and PET images, CSF biomarkers, and gene data as the

input data. It reported the classification accuracy of 84.7% (Lin

et al., 2020). The models that forecasted the MCI progression

from a combination of PET findings with cognitive scores

exhibited a considerable improvement in accuracy (up to

95.65%) (Teng et al., 2020). Some researchers studied the

additive value of distinct diagnostic modalities. They showed

the classification accuracy of models trained on MRI data

(63.9% Acc, Sn 76.7%, Sp 54.8%). The models had an improved

performance when supplied with PET and genetic data (68.15,

83.3, and 57.1%, respectively). The accuracy raised even

more when the invasive CSF study was added (68.1% Acc,

90.0% Sn, 52.4% Sp) (Young et al., 2013). While SFA patter

is more commonly used to forecast the disease outcomes,

in our study it was applied for diagnostic purposes. This

was a distinguishing feature of our approach and we showed

its potential.

6. Strength and limitations

Themajor limitation of the study is that the authors analyzed

only cases of Alzheimer’s MCI or dementia. The proposed

approach can be used for screening rather than diagnostic

purposes. Future research is required to adopt the classification

model to other clinical forms of dementia. The strength is

as follows. For the study, we used findings of non-invasive

cognitive tests and MRI examination, in particular, a routine

structural MRI (a 3D T1-weighted scanning sequence). The

accessibility of the equipment required for such a study is

high. Therefore, the results of the study can be easily applied

into practice.

7. Conclusion

• In healthy aging, the global cognitive functioning

changes slightly. It also remains stable across the course

of neurodegenerative diseases with the exception of

uncommon reversible or progressive cases. Scores in

RAVLT are quite stable in normal aging and across the

disease course with a minor downward trend in all the

study groups. The pace of neurocognitive slowing is

moderately higher in the CN group and MCI patients. The

difference in pace of changes results in a converging trend.

Thus, if the observation lasted several more decades, the

average result for all the groups would reach a common

value. Within time, there appear clear signs of worsening

the performance in several cognitive domains assessed

with DSST and TMT. The trendlines of the CN, MCI, and

AD groups converge at the approximated point of 100

years of age.

• We constructed regression models that predict functional

performance in cognitive tests from brain radiomics. In

accelerated aging, the neuronal loss differs among distinct

cell groups and brain regions. Logically, the SFA may have

features specific to the pathology. The models that we built

reflect specific SFA patterns for each study cohort. We

used the feature selection technique to identify the most

informative structural neuroimaging measurements.

• According to the SFA pattern, we distinguish three cohorts:

the cognitively normal elderly, patients with MCI and

Alzheimer’s dementia. The highest accuracy is achieved

with the model trained to predict MMSE from voxel-based

morphometry data. In the cognitively normal cohort, the

model identifies 85.06% of individuals as healthy subjects,

and relatively small number of cases (14.94 and 1.15%)

stays misclassified. In the MCI group, the true prediction

rate reaches 86.96%. The demented patients are identified

less accurately (73% Acc), which is the major limitation of

this approach. The classification based on themodel trained

to predict ADAS13 from VBM detects the demented
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patients more accurately than other models (78.38% true

prediction rate).

• The majority voting technique applied to models that

predict results in MMSE, ADAS, and RAVLT improved the

classification performance. In the CN group, we observed

the highest classification performance of the algorithm

trained on SBM data with the true positive rate of 91.95%.

The discrimination of MCI cases is most accurate in the

model trained on both types of predictors—VBM and

SBM (86.21%). The model trained on VBM data shows

the best performance for dementia cases (true-positive

rate of 80.18%). Thus, the multimodal approach described

in this study may advance the screening for MCI and

Alzheimer’s dementia.
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